

Lecture 2.

Determinants. The basic properties of determinants.

Minor and the algebraic complement set.

Let A be a square matrix, and write r_i for the i -th row.

Definition: The determinant is a real-valued function of the corresponding matrix. So, it is a number – not a matrix.

The determinant of matrix A is denoted by $\det A$ or $|A|$.

The determinant of the 1×1 matrix $A = [a]$ is equal to a .

Let's look at the case where A is a $n \times n$ matrix. Then its determinant may be calculated as

$$\det A = a_{i1} \cdot A_{i1} + \dots + a_{in} \cdot A_{in} \text{ for any row } i$$

and the same value of the determinant is obtained using a similar evaluation by any column. In the last formula A_{ij} cofactor to element a_{ij} which consists of the complement minor of element a_{ij} with the sign which is defined as $(-1)^{i+j}$.

We can write determinant of A as $\det(A) = \det(r_1, r_2, \dots, r_n)$. It is completely determined by the following four properties:

1. Multiplying a row by the constant c multiplies the determinant by c :
$$\det(r_1, r_2, \dots, cr_i, \dots, r_n) = c \det(r_1, r_2, \dots, r_n)$$
2. If row i is the sum of the two row vectors x and y , then the determinant is the sum of the two corresponding determinants:
$$\det(r_1, r_2, \dots, x+y, \dots, r_n) = \det(r_1, r_2, \dots, x, \dots, r_n) + \det(r_1, r_2, \dots, y, \dots, r_n)$$
3. Interchanging any two rows of the matrix changes the sign of the determinant:
$$\det(\dots, r_i, \dots, r_j, \dots) = - \det(\dots, r_j, \dots, r_i, \dots)$$
4. The determinant of any identity matrix is 1.
5. The determinant of A is the same as that of its transpose A^t .
6. If A and B are square matrices of the same size, then $\det(AB) = \det(A) \det(B)$